7/

BUILD THE CIRCUIT CELLAR
IC TESTER

PART 1: HARDWARE

This versatile tester can save you hours of troubleshooting
when building and debugging electronic systems

Having designed and debugged many electronic
systems, I have seen more than my share of defec-
tive ICs. I have also wasted more time than [care
to remember discovering that my latest creation
was not deficient, but that one of the factory-fresh
ICs I put in it was in fact defective. You'd think
they'd test them, wouldn't you?

An IC tester can provide both time savings and increased con-
fidence when building and debugging electronic systems. In
fact, finding defective ICs before manufacturing an electronic
product can also save a considerable amount of money by mini-
mizing the labor and board damage costs involved with rework-
ing electronic boards.

For the most part though, IC testers are used for repairing
failed electronic circuits. My latest example was my home:
While I was preparing this project, lightning struck my house
and practically everything got blitzed. If it were not for my 1C
tester’s help in finding the 29 blown chips in my home-control
and automatic-lighting system, I"d still be sitting in a dark, dead
house (I thought I had added every preventive measure [could,
but I can see we'll need another project on transient protection).
| was especially thankful that it could successfully test open-
collector driver chips—a problem for most economical testers.

Having an IC tester saved my day, and it may be something
you have always needed, too. In this part of Chapter 7, I will
describe the design and construction of a digital IC tester with
tutorial emphasis on the thinking I had to go through in the
process of building it. In Chapter 7, part 2, I will conclude witha
discussion of the specific operation of this tester and its advanced
software.

Copyright ® 1987 Steven A. Giarcia. All rights reserved.

Design Considerations

The first step in designing any project is to carefully consider
and define what the device is to do. For the IC tester, I first
looked at units already on the market and noted their features,
prices, deficiencies, and benefits,

I found a price range that varies from less than $200 to several
thousand dollars. They also vary considerably in their operation
and capability. The low-cost units are generally bus-specific—
plugged into a computer slot (Apple Il or Commodore 64)—and
include operating software. Up the scale from those are the
stand-alone—but relatively “dumb”—IC identifiers. With
these, if you put a good chip into the socket, a two-, three-, or
four-digit number indicating its identification appears on the
seven-segment LED display.

The low-end (less than $1000) testers I found have fixed de-
vice libraries and perform only simple digital tests (i.e., no AC-
parametric tests and no logic-threshold tests). Most, however,
indicate that they do provide “periodic™ library updates as new
standard parts become available.,

The high-end testers, costing several thousand dollars, allow
some AC-parametric testing, threshold testing, and testing of
analog ICs. While they are probably incapable of verifying
complete compliance to manufacturers’ data sheets, they cer-
tainly come close. They can help identify chips with marginal
timing specifications. The cost of these devices (including the
cost of maintenance, special adapters, and new device support)
makes them prohibitive to ordinary users; such devices typi-
cally find their home in large corporations with special testing
requirements (often those involved with military or aerospace
applications).

Flexibility at an Economical Price
My goal in developing the IC tester was to provide as much ca-
pability and flexibility as possible in an affordable device that
can be used by small businesses and electronic experimenters.

Certainly, economics played its part in requiring compro-
mises in the design. I decided that AC-parametric testing and
threshold-level testing would put the device into a higher-price
category than I was targeting, so these features were the first to
go. Then, I needed to determine what the user interface should
be like.

One possibility was to design a card that plugged into an IBM
PC slot, with an external test box connected by a cable. This
approach would let me develop and include PC software permit-

95

ting users to develop tests for their own devices. This would in-
clude standard devices not yet in the master library and custom
devices, like programmable array logics. Unfortunately, this
limited the use of the tester to owners of PCs or compatibles
{with a free backplane slot and a long extension cord), and the
tester would hardly be portable.

Another possibility was to configure the tester to connect to a
dumb terminal, or to any computer with terminal-emulation ca-
pability, via RS-232C. While this would broaden the number of
potential users of the tester, and would give the tester a little
more flexibility, it would also take away the flexibility of user-
generated device tests unless that extra (and I might add, very
intensive) software capability was provided within the tester,

Finally, I could choose the pure stand-alone approach. Such a
configuration would be a self-contained portable tester with its
own display and some form of entry panel. Even though it’s an
easier concept, a stand-alone unit would be more expensive to
build and would potentially have the same limitations as termi-
nal-based testers unless it also contained the “smarts™ of a
larger computer.

Three Units in One

After considering the various circuit possibilities, I concluded
that my IC tester should support all three modes of operation.
With only a slight increase in hardware complexity, I could pre-
sent a single design that operates in different ways depending
upon which peripheral components and software you install (see
photo 1). The operating configurations are called PC-host
mode, terminal mode, and stand-alone LCD mode.

The PC-host and terminal modes simply require a serial port
for operation. In terminal mode, the tester presents all state-
ments regarding test functions and results on the video termi-
nal’s display. The PC-host mode is similar, with the exception
that it has the added flexibility of letting you directly modify and
extend the device library.

In the stand-alone LCD mode, the tester shows device param-
eters and data on a 2-line by 20-character LCD. (It should be
noted that the LCD is optional; you can operate the tester in the
other two modes without it.)

In essence, the stand-alone LCD mode provides a portable
(i.e., banery-operated) IC tester suitable for testing any chips
that are precoded within its extensive EPROM-resident device
library. (The Revision 1.0 library currently contains about 600

[i
|

Photo 1: The prototype IC tester printed circuit board
configured for terminal operation. The IC under test is
inserted into a special zero-insertion-force socket on the
left side, and test information and menu selections are
displayed on a terminal connected through the DB-25
connector on the right side.

96

74xx00-series and CMOS 4000-series chips.)

The terminal mode provides a menu format intended to maxi-
mize the information displayed, while the PC-host mode con-
verts this otherwise stand-alone piece of hardware into an inter-
active and configurable diagnostic tool with the intelligence of a
full computer.

Testing Logic ICs
How do you go about testing ICs? Certainly, I had 1o answer this
question before 1 could design the tester,

Testing 7400-series logic devices appears relatively straight-
forward (I didn’t consider AC and voltage threshold checking
for reasons of economics). To test a two-input NAND gate, for
example, you merely set specific logic levels on the gate inputs
and check that the outputs are what they are supposed to be.

The process involves a series of test vectors. A test vector is a
pattern of bits (Os and 1s) applied to the inputs of the device
under test (DUT), to which the DUT responds with a response
vector (a pattern of bits on the DUT s outputs). You then com-
pare the response vector from the DUT to the expected response
vector, with bit differences indicating pin failures.

You can specify any number of test vectors for a device, al-
lowing you to test the chip as completely as you desire. For each
test vector specified for a device, you must also specify a corre-
sponding expected response vector. Since there are cases when
some outputs of a device may be in an unknown state, you must
also provide a “don’t care™ mask for each expected response
vector, indicating which bit comparisons the tester should
ignore,

One significant difference between my IC tester and others in
the same price range is that mine does a full-function logic test
using as many vectors as necessary to exercise all logic possibil-
ities on the test device. Most inexpensive testers don’t do this.

So Many Logic Families

Unfortunately, real-world electronics doesn’t quite follow
theory. Specifying test vectors is only part of the job. Dealing
with all the electrical parameters of the various IC logic families
is the real problem.

Since its initial development and introduction by Texas In-
struments, the 7400 series of ICs has become an industry stan-
dard—at least in terms of device functions and pin-outs. These
chips are composed of a large variety of §SI-, MSI-, and LSI-
logic building blocks, which designers put together to produce
the desired functions.

The original 7400-series family consisted primarily of simple
functions, like gates and flip-flops. These were adequate for
many applications, but designers kept demanding devices with
increasingly greater complexity and functionality.

IC technology did not stand still as designers needed more
devices with higher speed and lower power. These requirements
led to the introduction of the 74H00-series (high-speed) and
T4L00-series (low-power) devices. For the most part, these new
series maintained the device pin-outs established by the stan-
dard-TTL predecessors (the 7400 series). However, the 74H00-
series devices consumed substantially more power than, and the
74L00-series devices were slower than, the standard 7400-
series devices.

As the technology improved, even more families appeared. A
faster family using Schottky technology was established, the
74800 series, along with a popular low-power Schottky family,
the 74LS00 series.

Eventually, the very-low-power CMOS devices that had been
manufactured with 4000-series numbering shifted over to the
more popular 74xx00-series pin-out and numbering scheme
with the introduction of the 74C00-series family of devices.
These devices were slow and had low-current-drive outputs, but

they filled a niche in designs requiring extremely low power
consumption.

Other families include 74ALS (advanced low-power
Schottky), 74AS (advanced Schottky), 74HC (high-speed
CMOS), 74HCT (high-specd CMOS, TTL-compatible), T4AC
{advanced CMOS), T4ACT/74AHCT (advanced CMOS, TTL-
compatible), and 74F (Fairchild advanced Schotiky).

Simple Concept, Tough Trade-offs

Digitally speaking, the logical parameters of a 7d4xx00 are the
same regardless of its family, and you could easily be misled
into thinking that we arc designing a digital tester. However,
cach of these families has analog characteristics that differ from
the other families. The IC tester is actually more an exercise in
analog design. Let me explain.

Typical differences beiween logic families are power con-
sumption, speed, output current drive, input current loading,
input transition thresholds, and output voltage swings. Compar-
isons of some of these parameters for a 74x00 quad NAND gate
from several familics are shown in table 1. (While the param-
eters specified in table 1 for the 74x00 devices do not apply to all
devices within the respective families, they are representative of
the majority of the devices).

In effect, table 1 shows the wide variations of input and output
parameters that the ideal IC tester must support. Low-level in-
put currents range from | microampere to 2 millamperes (and
much higher on some device inputs), and low-level output cur-
rents range from 360 uA to 20 mA.

The tester's ability to identify a device presents an important
consideration. If the tester is designed for T4ALS or 7400
“straight™ TTL, you might smoke a 74C chip if you inserted it
into the tester operated at the current levels of those devices.

Any truly general purpose (read usable) tester must accom-
modate the wide ranging voltage and current parameters of all
the families. Since the tester may not know at the outset what
device is installed in the ZIF (zero insertion force) socket (re-
member, one of the modes is to identify unmarked chips), it
cannot make any assumptions as to which pins are inputs and
which are outputs.

The tester requires a certain amount of trial and error to iden-
tify an unknown device, and it must employ current-limiting re-
sistors between the DUT (in the ZIF socket) and the I1C tester's
vector-generation circuitry (for when a DUT and tester output
are connected together).

Also. while most devices have totem-pole outputs, some have
tristate, open-collector, or open-drain outputs, The tester must
be able to pull tristate outputs high and low when they are in the
high-impedance state to verify the state, and it must also be able
to pull open-collector and open-drain device outputs high and
low to verify proper operation.

The catch-22 1s to determine a resistor value that will support
the input and output current specifications for all the device
families to be tested, yet not overstress the DUT. If you go strict-
ly by the book, no single current-limiting resistor value works
for both inputs and outputs in all families.

The device specifications provided in table 1 are the manufac-
wrer's recommended operating conditions (ROCs). Looking
further into the data sheets, however, we find more information
regarding what the chips can do if they have to, such as limited-
duration short-circuit output current.

In effect. if we take advantage of our regulated testing envi-
ronment, we can stretch the ROC a little to choose a resistor that
presents the best compromise for handling all the logic families.
Think of it as the electronic equivalent of poctic license.

All things considered, 1 found that the resistor value should
be in the 390- to 421-0hm range. Since 390 ohms is the nearest

R e R P

standard resistor value (5 percent tolerance), I chose it for the
tester. (After I built the tester, I substituted all standard resistor
values between 300 and 430 ohms, inclusive, and verified that
the 390-ohm choice provides the best overall performance.)

How It Works
After determining the above, I had one more hurdle. The tester
needed to be able to apply virtually any number of test vectors to

the DUT without losing the device’s state from the previous vec-
tor—and without causing undo stress on the DUT (i.e., without
keeping any of the DUT outputs in a high-current output mode
for an extended period of time). I solved this with what I like to
refer to as a combinatorial-latch circuit.

Each ZIF-socket pin typically has three circuit connections to
the IC tester (see figure 1). One connection (connection A) is to

Table 1: Comparison of specifications for various 74xx00 devices. (Subscript identifiers are IL—input low, IH—input
high, OL—output low, and OH—output high.)
Device L i ViL ViH VoL Vou loL loH
name max max max min max min max max
(nA) v V) v V) (mA) (mA)
74LS00 =0.4mA 20 08 20 0.5 27 8.0 -04
74H0O -2.0mA 50 08 20 04 24 20 -0.5
74L00 -0.18mA 10 0.7 20 04 24 36 -02
74300 -20mA 50 08 20 05 27 20 -1.0
7T4AS00 -0.5mA 20 08 20 0.5 2.5 20 =20
74ALS00 -0.1mA 20 08 20 0.5 25 8.0 -04
74HCO0 =1.0pA 1.0 1.2 3.15 033 384 40 -4.0
T4HCTOO -1.0pA 1.0 08 2.0 0.33 384 4.0 -40
T4F00 - 0.6 mA 20 o8 20 05 2.7 20 -0.36
74C00 -1.0pA 1.0 1.5 35 0.4 24 0.36 -0.36
7400 -1.6mA 40 08 20 04 24 16 -04
TAHCT 244
READ- BACK
BUFFER
Yo cru)
L]
L]
- CURRENT- LIMITING
ot ﬂlés:smnsl' o
/
o 52
74L5374 -~ 74HCT 244 Ve
QUTPUT T OUTPUT/ e ZIF
— VECTOR =y FEEDBACK 4 SOCKET
To CPU LATCH i BUFFER
s (TRISTATE) | ‘ i ! .
| L]
{1} .
Pl A
 EEEES EESARES
LI —qait e _ wos |,
500-m - {
PULSE] || L
L =
L
it W

Figure 1: Diagram of the IC tester’s combinatorial-latch circuit. The zero-insertion-force socket holds the device under test.

98

The DB-25S connector provides the
RS-232C interface connection to an
IBM PC or any dumb terminal.

an output of a TAHCT244 buffer—the feedback buffer—through
a series 390-ohm current-limiting/load resistor. Another con-
nection (connection B) is to the corresponding input of the same
T4HCT244, through a 4.7-kilohm series feedback resistor. The
74HCT244 input is also connected to an output of a 74LS374
tristate latch.

The final ZIF-socket-pin connection (connection C) is direct-
ly to an input of another T4HCT244 tristate buffer—the read-
back buffer. By reading the 74HCT244 read-back buffer, the
processor can determine the logic levels of the DUT pins (the
ZIF-socket pins).

The IC tester sends a test vector to the DUT by writing the
desired bit pattern into the 74L8374 latch, while the latch's out-
puts remain in the high-impedance state. The system then en-
ables the outputs of the 7418374 (i.e.. they are allowed to go
active) for a period of 500 nanoseconds, applying the test-vector
bit pattern to the inputs of the feedback 74HCT244 buffer.

During the 500-ns 74L.5374-cnable period, the rclatively
high value of the feedback resistors (4.7 kilohms) ensure that
the 74HCT244 inputs will see the test-vector logic levels from
the 7415374, regardless of the logic levels present at the
DUT pins.

Within a few nanoseconds (i.e., propagation time) of the time
the feedback T4HCT 244 first sces the new logic levels from the
7415374, the same logic levels will appear on the outputs of the
74HCT244; these logic levels will remain on the 74HCT244
outputs for the duration of the 500-ns pulse,

If a DUT output in the ZIF socket is in the opposite logic state
as the corresponding 74HCT244 output, the resistor between
the 74HCT244 output and the DUT pin will present a load to the
DUT output, possibly causing it to go into its "overdrive” mode
in an attempt to retain its desired output logic level. The over-
drive operation will continue until the end of the 500-ns pulse,
when the 74L5374 outputs are finally disabled, returning to
their high-impedance state,

When the 7415374 outputs are disabled, the only inputs to
the feedback 74HCT244 will be from the DUT feedback resis-
tors. Since the feedback buffer is a 74HCT-series device, it pre-
sents negligible input current loading (about 1 pA), so the volt-
age levels reaching the 74HCT244 inputs through the feedback
resistors will be nearly the same as those at the corresponding
DUT pins.

If the voltage coming through a feedback resistor to the
T4HCT244 is the same logic level as that presented previously
by the enabled 7415374 output (the case when the DUT pin is
an output of the same logic level or when the DUT pin is an
input), the 7T4HCT244 output will remain unchanged. Thus, the
logic level is combinatorially latched by the 74HCT244,

If the voltage appearing at the 74HCT244 input from the
feedback resistor is the opposite logic level of that presented pre-
viously by the 74L.S374 (which is the case when the DUT pin is
an output of the opposite logic level), the 7T4HCT244 will see the
new logic level at its input and change its output to match. When
this occurs, the 7T4HCT244 output then matches the output of
the DUT pin, eliminating the loading that was present. Again,
the new logic value will be combinatorially latched by the
7T4HCT244 using the feedback loop.,

You can see that the loading duration on a DUT output will es-
sentially be the duration of the enable pulse—only 500 ns. This

keeps potential chip stress to a minimum, while verifying the abili-
ty of device outputs to operate properly under load conditions.

The IC Tester Hardware

The schematic for the IC tester is shown in figure 2. The 8031
single-chip microcontroller (IC1) is the brains of the tester. The
firmware to run the tester is provided in an EPROM at IC6. The
current standard device library (version 1.0) is supplied on a
27256. but 1C6 can accommodate several EPROM types, in-
cluding 2764, 27128, and 27512 devices. The type you would
use is determined by the JP1's jumper configuration.

The ZIF socket (IC17) is an Aries universal socket. This spe-
cific socket supports devices up to 24 pins, having either 0.3- or
0.6-inch DIP-package widths. When you insert devices into the
ZIF socket, you bottom-justify them.

Unfortunately, one problem with using a single ZIF socket
on a tester is configuring the power pins for the DUT. Most ICs
conform to the standard diagonally opposite corner-pin power/
ground configuration: pins 24/12, 16/8, and 14/7. However, a
number of devices have oddball power and ground pin-outs.
These include 14-pin ICs with ground on pin 11 and power on
pin4, 16-pin ICs with ground on pin 12 and power on pin 5, and
16-pin ICs with ground on pin 13 and power on pin 5, among
others (there are also devices with two power pins to support
voltage-level conversion).

After reviewing the devices in each oddball pin-out category,
I chose to support the two categories with the most devices: 14-
pin devices with ground on pin 11 and power on pin 4 and 16-pin
chips with ground on pin 12 and power on pin 5. This is, of
course, in addition to supporting devices having corner power
and ground pins. (In the stand-alone identify-unmarked-chip
operating mode, the tester will successfully identify only
corner-pin-powered chips.)

The DB-25S connector provides the RS-232C interface connec-
tion to an [BM PC or any dumb terminal. The connector is config-
ured as a DCE (data communication equipment) device, allowing
you to use a straight-through cable. You need only three pins on
the connector (pins 2, 3, and 7—receive, transmit, and signal
ground, respectively), but I've hard-wired the DTR (pin 6) hand-
shaking line to a logic high for terminals that need it.

The IC tester has push buttons and some switch-selectable
options. A four-position DIP switch (SW1) is used for several
purposes, including data-transfer-rate sclection, PC-host/ter-
minal mode selection, and 74Cx mode selection (to be de-
scribed next month). Push buttons PB1 and PB2 are for support-
ing stand-alone mode operation. PB1 is the identify button, and
PB2 is the retest button.

J3 is the connector for the optional LCD, which uses the 8031's
P1 connector as its data bus. I chose the Pl bus as the LCD’s
driver to meet the LCD's (relatively slow) timing requirements.
The 7415139 (IC7) is the address-decoding circuit for accessing
several devices on the tester. It decodes the ZIF tristate latches
(IC8 through 1C10) and read-back buffers (IC 14 through IC16), as
well as the power/ground transistor latch (IC19).

The 74LS139 also provides a special signal that enables the
outputs of the 7T4LS374 tristate latches for approximately 500 ns
(the 8031 WR) strobe duration), transferring the latched
T4LS374 bits to the combinatorial latches formed by the
T4HCT244s (IC11 through IC13) and their associated feedback
resistors.

For the tester’s buffers (IC11 through IC13), I chose T4HCT
devices instead of 74LS (or other family) devices. Members of
this family drive their outputs close to the and ground
rails, can source a lot of current, and provide negligible load on
the resistor-feedback circuit. Similarly, the read-back buffers
(IC14 through IC16) are 74HCT devices to keep loading to an

9

+5V 1 JP1 2
JP1 CONFIGURATION L) 1 sas R3 +5Y
10K
=] e |e | 174w
e @ e e o e I Slll‘ 5%
e s s L= o
2764 2rEsE 27512] [
27128 7
+5W mann 167
Rl c3 T4L5139
47K i I 1.7, P Py i)
/AW xTaLl P27 vao—
5% ik Al 12 npil—
l rrsjit au A ¥ o
o - pea STt rralliaAN
10uF ’;_,ﬁ_ﬁ_) -
+| P 1
1 o AS T4LS5139
E& P21
+5V c21 s2olid as /) = r3p—
5 :?,..F icl VPY LI—
i;‘;F &ND I(8031 = [3le oY 1 —
_’I 5 i Ty LI—
FEEN
ALL
*l_c2a2 +l c23
ol s o | i 2 ne Y
Pl
] P02
L |
1€ FO4
MAX232 2
LI P cze 2 LA
- cr- L4 PO.7
2 $
Cus cu- 1 lﬂ
FLO
: » 2 ” 11 __"...\
L84
:l o@]lo LES P ::: s aa
I l" c2—2pi2 Pl.l.—“-\
11] ca—ria mg..Lﬁ\
LT dE R
p— F] 5 1.7 _——l!\
*S¥ poweR |
Cl——s +—S5TATUS
o1 Ci—e ol—ziF2s o o ee
08-258 TiLz20 cs—:- :]—zu-*zz
13jle o 2 0 0 o e o all G4 ——a l——tlfﬂ
5| o 0o o 6 6 08 8 0 0 00 |l4 :;u IDENTIFY RETEST
14w
Jz 100N« 5%
3 1
LY ——
Ry — ;
EXT 5V SUPPLY UR1 -.LC-? .-L.CI
OR D"‘_l 1"" LM 7805 OlpF 0.1WF
INT. 9V SW2 , T T
6-C CELLS 11 PR it = =
+ il GNE c24 Az Loz Lcoa Lois —cis
= 2 F ; A uF F F F
:; . [T | T T T T T
b}

Figure 2: Schematic for the Circuir Cellar IC 1ester.

100

CONTHOL Bul

N
fi- ?
j Al L3 [N
e Jd LY | — a1
-”—l:_:-/ 1 2 Al il [
—t0e [| b Al0 1 [
L1 ZIF | —— -T—I!on : i e
— [[of. r - ey L K P
H/DC ZIFE — — F19 7 A
= 213 —e -!—I ziF18 y ' 5 G
A —s o ZIFY) r‘n_'; iz] 1 1 b
2IFS —‘-4 l—i— ZIF16 H mn " ¥ . ak
ZIFG w———t @ ZIF 15 N 1 * s 12 & o
—WR3_ FT -—:- —— TIF1e ,rg——']' 50 sa b H
=), N i ,ﬁ_._.l; a0 a0 ” : A3
WA RS —e =R] i F "
R L LR ZIF10 ——e ZiF1 T L T P
l l ,-Q‘l-—i- 10 10 - 104 a0
—_— 19 10
£N OE b
L I“ /j" 21812
"\
h_SAlS | -
14 7] o
ioi 0! 111 [
745244] R | & W
U P bs 2 e
—iitd 24 3 IN.HL—LL o4
e b gl S} P
Le— il a1 1 "-—nnl.n_-—l-’— 02
hige ~ i Va4 1 o e} | ol
P 1 h_oo [T S
a3
& 1
2 I‘u | b 121 nas
0] —
15 i, 3
|
=
14
SW1 CONFIGURATION
CN-TERMINAL OFF-PC/HOST i DATA BUS o
Cd
ON- 740X OF F = NORMAL
ON ON OFF OFF
ON-300 OFF-1200 ON-2400 OFF-9600
ON GFF
Les Leio Len

101

absolute minimum (do nor substitute 74LS devices).

The discrete transistors (Q1 through Q6) provide the power
and ground switching for the ZIF socket (IC17). Pin 24 of the
ZIF socket is connected directly to +35 volts, eliminating the
need for an additional transistor. The PN2907s (Q3 through Q6)
are for turning on power (+5 V) to various ZIF-socket pins (9,
19, 20, and 22), while the PN2222s (Q1 and Q2) are for turning
on ground to two of the ZIF-socket pins (12 and 16).

The 74HCT374 latch (IC19) controls the transistors. As men-
tioned earlier, 74HCT devices can source and sink current
equally well. This fact made the 74HCT374 a good choice for
driving the transistors, since it can handle the transistor base
currents equally well for the ground switches (high 7415374
outputs) and the +5-V switches (low 7415374 outputs).

The tester has two LEDs. D1 is merely a power-on indicator
that lights whenever power is applied. D2 is a software-con-
trolled status LED used to indicate when the device is operating
in an R§-232C mode (PC-host or terminal, LED on) or a stand-
alone mode (LED off).

Experimenters

While you can order printed circuit boards and kits for the Cir-
cuit Cellar IC tester, I encourage you to build your own. If you
don’t mind doing a little work, I will again support your efforts.
A hexadecimal file of the executable code for the 8031 Revision
1.0 system EPROM code, suitable for stand-alone or terminal
operation, is available for downloading from my bulletin board
ar (203) 871-1988.

~ natA BUS 8y
. A ice icH icle N STaTUE ﬂon
NLEIN TAMCTI84 Rigmir MHCTZEL
il o P2 Eeas e L 184 v l1__or 4 A%6
el [o 4 180 o0 2vi 2 Ay My s __ze
Tl PP IT] T o5
s R & TR PYPEtY L A 3 s/
n.zi_z. a0 so)t : i Jlf ..u._m..;
Ny = TV "AA- Lt
i] PP | L iar ove jE Ae L1601
e} TR M it W iy 80
>"\ X oe 36 16
1 i
A i Y s Ai-Rzs
. G Bl
2
-
"
L CONTROL BUS e
I8 iciz P
MLSIT TAMCTZ48 “‘En MHCT
2 w e LS FFPR T B
LS PP 3 Blen mfE
MGD [1+] Bil 12 F T 1 L] M
hOE e go L] PR T] L -
L] PR L Eliae gy pAE v
hNEE 21 so b 3 FPPREERY LI iy
b2l sl ol Sliaz vz |
e T T £ 4 TR U
X e 1620
L 1] 1 o
| = |0 O
K et
W
v
10 L%
LS IN AHCTR44 5
hor_isd,. 1 VL S PP | . ';"h'“" Hiar ima L_or A AR
hze 11, ol 1Y p— [v Y P LT B LEWATY %
"-Miﬂ (1] 1 il ez vz -: g : TAT 2W2 |1 __Bs A
St E PR B I W LS PPN TTY « M-
e | PR L FTTRETTY Ll s 21 aa v PLBLA
ps e PP £ Sliay a2 A [l P T
e L Llia v S " iz i rarw
I § P E I i A A i mpr=o
[[=13
£ oc L] i6 14 | TamcTiea J
— u ey
= I H L [P 1 i 7
'\ Li7] 4,70 FLLAE)
-
P
I
R [T
e
iy 2iraz
TiFEy
v
Figure 2: Continued.

102

Alternatively, you can send me a preformatted IBM PC 5'%-
inch disk with return postage, and I'll put the file on it for you
(the hexadecimal file could be used with my CCSEP serial
EPROM programmer, for example). Of course, this free soft-
ware is limited 10 noncommercial personal use,

In Conclusion

In Chapter 7, part 2,1 will present the tester’s software, which lets
you develop and debug your own test vectors and device
libraries.

Special thanks to Roger Alford, Jeff Bachiochi, and William
Potter for their work on this project.

Editor'sNote: Steveoften refersto previous Circuit Cellar articles.
Most of these past articles are available in book form from BYTE
Books, McGraw-Hill Publishing Company, P.O. Box 400,
Hightstown, NJ 08250, (1-800-2-MCGRAW).

Ciarcia’s Circuit Cellar, Volume | covers articles in BY TE from Sep-
tember 1977 through November 1978, Velume Il covers December
1978 through June 1980, Velume I covers July 1980 through Decem-
ber 1981, Volume IV covers January 1982 through June 1983, Volume V
covers July 1983 through December 1984.

The following items are available from

Circuit Cellar, Inc.
4 Park St., Suite 12
Vernon, CT 06066
{203) 875-2751

. Circuit Cellar IC tester experimenter’s kit for stand-alone or termi-
nal operation. Contains IC rester printed circuil board, 11.0592-mega-
hertz crysial, programmed 27256 EPROM with Revision 1.0 device
library, MAX232 level shifter, Anes 24-pin narrow-format ZIF sock-
et, and manual with complete paris list.

ICTOL-EXP v b e s aeni 599
2. Circuit Cellar 1C tester full printed circuit board kit for stand-alone,
terminal, or PC-host operation. Conains IC tester printed circuit
board, 8031 processor and crystal, programmed 27256 EPROM with
Revision |.0device library, Aries 24-pin narrow-format ZIF socket, IC
sockets, all board-mounted components and ICs, PC-host software on
PC format disk, power supply, and manual,

ICTOL-FULL ooz i hinaataialys et g i i i $t19
3. Complete Circuit Cellar IC tester kit with stylish enclosure. Full
primted circuit board kit with all components, right-angle-mounted en-
closure adapter board with ZIF socket and LCD, software on PC format
disk, power supply. and manual.

VeI e inanvitnp snivag inmantio asumicmpmsirauis dhsavsmrsmhsinsie $349
4. Two-line by 20-character LCD and 14-pin Berg connector for either
item | or 2.

All payments should be made in U.S. dollars by check, money order,
MasterCard, Visa. or American Express. Surface delivery (U.S. and
Canada only): add $5 for U.S., 58 for Canada, For delivery to Europe
vig U.S. airmail, add $14. Three-day air freight delivery: add $10 for
LS. (UPS Blue), $25 for Canada (Purolator overnight), $45 for Eu-
rope (Federul Express), or $60 for Asia and elsewhere in the world
(Federal Express). Shipping costs are the same for one or two units,

There is an on-line Circuit Cellar bulletin board system that supports
past and present projects, You are invited to call and exchange ideas and
comments with other Circuit Cellar supporters. The 30071200/2400-
bps BBS is on-line 24 hours a day at (203) 871-1988.

103

7

BUILD THE CIRCUIT CELLAR
IC TESTER

PART 2: SOFTWARE AND OPERATION

Steve guides us on a tour of the software that makes his
inexpensive IC tester possible

In part 1 of this chapter, I talked about the design
of my IC tester. In this part, I'll talk about its
software and operation.

Three in One

To refresh your memory, the IC tester supports
three modes of operation: PC-host mode, terminal mode, and
stand-alone LCD mode.

PC-host mode requires that you connect the tester to a serial
port on an IBM PC or compatible. In this mode, the PC handles
all test-vector transfers and comparisons and provides the high-
est level of flexibility and power.

To operate the tester in terminal mode, you connect it to a
dumb terminal or any microcomputer that emulates a terminal
(see photo 1), The options are ¢ssentially the same as those of-
fered in PC-host mode, although you can use only a fixed,
ROM-resident device library.

The stand-alone mode of operation lets you operate the tester
with only two push-button switches and a 2-line by 20-character
LCD. As in terminal mode, this mode operates only with a
fixed, ROM-resident device library. It lacks some features of
the other two modes, but it permits device identification (using
the Identify push button) and specified-device testing (using the
Retest push button). The latter lets you determine specific pin
failures on a bad IC and display this information on the LCD.

Much of the flexibility of the IC tester comes from its modifi-
able and expandable device library. While an IBM PC (or
clone) is essential for PC-host mode operation, it is required if
you're going to make any system software changes, like adding
new chips to the library.

With the exception of a single assembly language serial-port
driver, all the software was written in Turbo Pascal on an IBM
PC. (While the programs do take advamtage of some PC-spe-
cific features of Turbo Pascal, you shouldn't have much trouble
converting them to other Pascal compilers.)

The Definition of a Test Vector

In order to define test vectors, it is important to develop a straight-
forward means of describing the vector information. What infor-
mation do we need to define a device and its test vectors?

The device definition consists of the device name (e.g.,
7400), the specific package size (¢.g., 14 pins), the locations of
the power and ground pins (¢.g., 14 and 7), and which pins are
inputs, outputs, or tri-state.

A test vector merely specifies the high (1) and low (0) logic
levels to be written to the pins of the device under test (DUT). A

Copyright © 1987 Steven A. Clarcia. All rights reserved.

test vector written to the DUT pins is referred to as an output
vector.

To determine if the DUT responded properly to the output
vector (i.e., to make sure outputs switched as expected and to
verify that no inputs are shorted), the tester must read a corre-
sponding read-back vector from the DUT and compare this to
an expected read-back vector. Each complete test vector con-
sists of an output vector and an expected read-back vector.

The format for specifying the vector-definition modules is
shown in table 1. The order of the different line types is impor-
tant, though you may freely intersperse comment lines. (Like
many assemblers, all characters on a line following an asterisk
are ignored by the test-vector compiler.)

The best way to understand the vector-definition module for-
mat is by example. Table 2 shows the vector-definition module
for a 7400 quad two-input NAND gate. As its name implies, this
device comtains four two-input NAND gates (the pin-out is
shown in figure 1),

Photo 1: The Circuit Cellar IC rester shown here is operating
in terminal mode, connected to a Tandy DT-100 terminal via
the R5-232C port on the top of the tester.

105

In table 2, the first line is the device name. The name can
appear anywhere on the line after the pound sign (preceding and
following spaces are ignored). As a general rule, you should
keep device names as generic as possible. Instead of using the
name “74LS00" use “7400," and so on. Since the tester will
logically identify both a 741500 and 74HCO0 as the same chip,
it is better to display “7400," or perhaps “74xx00." There are,
of course, cases where you can make exceptions.

The second noncomment line of the vector-definition module
isthesetup line, which has an Sin the first column. Three numbers
with delimiting s must follow the §; the first number indi-
cates the number of pins the device has, the second indicates the
ground pin number, and the third indicates the power pin num-
ber. These numbers tell the compiler (and the tester) what the
chip’s device is. As I described in Chapter 7, part 1, the tester
supports six device types (see table 3).

Following the next comment line is the pin-function line,
which has an F in the first column. This line specifies a pin-
function identifier for each pin, with the identifiers being sepa-
rated by one or more spaces. Valid identifiers are I for input
pins, O for output pins, and T for tri-state pins.

The pin-function line also determines the columnization for
the remainder of the device vector definition. All Is and Os in
the test vectors must be aligned under these columns, and the

Table 1: Device test-vector definition-module format.

¥ DeviceName * Device-name record
* Comment lines may be interspersed

* for documentation and clarification purposes.

S #Pins Gpin Ppin * Device-setup record

FI O ... T | | *Pinfunctionrecord

P p¥ pi . p¥ pl pf * Pin-number record

I 01 ...1 1 0 *lintal(output) vector record

R1 0 1 X 0 * Expectedread-back vector record
L s

R

E * End-ol-definition record

Notes: DewceMame = name of device
* = stant of comment area
#Pins = number of pins an the IC
Gpin = ground pin number
Ppin = power pin numbser
p# = pin number

Table 2: Device test-vector definition module for the
7400.

7400 * Quad two-input NAND

5147 14

* NAND 1 NAND 2 NAND 3 NAND 4
Fil1 1O 110 11 © 1 10
P23 4 586 9 108 12131
Il 000 010 100 1 11
R 1 1 1 0
I 010 100 11 1 000
R 1 1 0 1
1 100 111 000 010
R 1 0 1 1
111 000 010 100
R 0 1 1 1
E and

|:

106

pin numbers in the pin-number line (the next line in the defini-
tion) must also be aligned under these columns,

The next line in the vector-definition module is the pin-num-
ber line. It has the letter P in the first column. This line specifies
the device pin numbers used in testing. The numbers must cor-
respond to the pin-function identifiers specified in the pin-func-
tion line and must fall in the columns defined by the function
identifiers. If the pin number for a column has two digits (e.g.,
pin 14), either of the two digits can fall in the column.

The next several lines in the vector-definition module are the
actual test vectors. The lines beginning with / are initial vectors
(output vectors), and the lines beginning with R are the expected
read-back vectors.

For [vectors, the acceptable identifiers are | and 0, cor-
responding to high and low digital values, respectively. For R
vectors, acceptable identifiers are 1, 0, and X, with X indicat-
ing “don’t care.” (X indicates that the tester should ignore
the specified pin when comparing the actual read-back vector to
the expected read-back vector, If the 1 or 0 bit value of a col-
umn does not change from one line to the next, leaving the col-
umn blank in the subsequent line[s] implies that the value
should be the same as the last value explicitly stated for that
column.)

The last line in the vector-definition module is the end line,

B
2]

]
2]

]
=]

7]
=]

[]
B

[]
L]

GND

]
=]

Figure 1: Pin-ow for a 7400 quad two-input NAND gate.

which begins with an £. This is the only letter required to speci-
fy the end of the vector-definition module.

Finally, there is the issue of logically identical devices that
have different part numbers (like 74LS04 and 74LS14). Differ-
ences typically lie in some of the special operational param-
eters, like Schmitt-trigger inputs or improved current drive ca-
pability, which cannot be detected by this IC tester.

Functionally identical devices (i.e., the same test vectors
would pass on both devices) are declared to be clones of a spe-
cific device. An example of this is shown in table 4. The device-
name and end lines are the same as the standard vector-defini-
tion module, but only the C line is found between them,
indicating which device it is supposed to be cloned from.

Compiling Test Vectors for Use

The test-vector compaction compiler, VECCPT.PAS, is a
Turbo Pascal program that accepts files conforming to the de-
vice test-vector definition format described above. [t converts
the device and vector information into a single compact module
that the computer and tester use to test the devices.

VECCPT.PAS uses seven primary arrays to store the com-
pacted vector information. The primary array, VectorTable,
holds the actual test-vector information, including the device
pin-function information (i.e., which pins are inputs, which are
outputs, and which are tri-state), the output vector bytes, the
input vector bytes, and the “don’t care™ mask bytes.

Because the ZIF (zero insertion force) socket has 24 pins,
tester software uses 3 bytes for pin and vector information for
every device, regardless of size. Consequently, the pin-function
and test-vector information is stored as if a 24-pin device were
being tested.

The “don't care™ mask generated by VECCPT. PAS automat-
ically masks the read-back vector pins not associated with the
device being tested. For example, if a 20-pin device is being
tested, the bits of the 3-byte read-back vector associated with
ZIF-socket pins 1, 2, 23, and 24 will be masked by the “don’t
care” mask (power and ground pins are automatically masked).

Each of the six device types supported by the IC tester has its
own associated array for storing device names and pointers into
the VectorTable array. These arrays are called DeviceType

While the VectorTable array uses variable-length records,
with each record being the information to support one device,
the DeviceType arrays use fixed-length records, with each
record containing a 9-byte field for the device name (8 bytes for
the name and | byte for the string size) and an integer (2-byte)
field for the VectorTeble pointer.

Figure 2 illustrates the information stored in the various arrays
and how the arrays interact. As shown, device names are stored in
the appropriate DeviceType array, and the device pin-function
and test-vector information is stored in the VectorTable array.
A pointer in the DeviceType array indicates the start of the cor-
responding vector-information record in VectorTable.

The VectorTable device record begins with a 2-byte field
indicating the number of bytes in the record, The next 3 bytes
specify which pins are inputs and which are outputs (set bits are
inputs, and cleared bits are outputs).

The following 3 bytes indicate which pins are tri-state (set bits
are tri-state). If a pin is indicated as being tri-state, the 1/0 value
in the corresponding bit position of the previous 1/0 definition
bytes is irrelevant. By default, VECCPT.PAS specifies unused
ZIF (zero insertion force)-socket pins as being tri-state.

Following the 2 record-size bytes and 6 device pin-function
definition bytes, the actual test-vector information begins. Each
complete test vector consists of 9 bytes in the record. The first 3
specify the output vector, the next 3 specify the expected read-
back vector, and the last 3 specify the “don’t care™ mask.

As VECCPT.PAS executes, it stores device-name, pin-func-
tion, and test-vector information into the appropriate arrays.
Notice that the program does not need to store device-type infor-
mation, since a device's type is determined by which Device-
Type array it is placed in.

Device clones are handled somewhat differently. When a device
is specified as a clone of another device (the “original ™ device),
the name of the clone is placed into the next available record of the
appropriate DeviceType array. The record number of the origi-
nal device (in the same array) is then determined, and the value
32,767 is subtracted from the record number; this value (always
negative) is then stored in the pointer field of the clone record.

Thus, when the operating software finds a negative integer
value in the pointer field of a device record, it will know the
device is a clone of another device. It then adds 32,767 to the
pointer value to get the record number of the original device.

I should point out that when VECCPT.PAS processes o
clone, it looks through its arrays to find the named original de-
vice. If the specified original device is not found in any of the six
DeviceType arrays, the software generales an error, and the
clone device will not be stored in any array (the compiler would
not even know which array should get the clone record). Thus, it
is essential that you specify clone devices only after the corre-
sponding original device.

When compaction of the test-vector files is complete, the
compacted information is stored in a binary file. (The format of
the data stored in the compacted file is shown in figure 3.)

Operating Software

Once the device test vectors have been developed and compiled
into a compacted file, we are ready to use the tester for testing
and identifying devices. This involves the cooperation of several
programs.

First, there's a ROM-resident program on the [C tester. This
program is written in 8031 assembly language and handles the
three operating modes from the tester’s vantage point. Then
there's a Turbo Pascal program that executes on the IBM PC (or
XT or AT) for operating the tester in PC-host mode.

Finally, another Turbo Pascal program converts the informa-
tion in the output file produced by VECCPT.PAS into Intel
hexadecimal ASCII format. This permits you to download to an
EPROM burner. This lets you put new device vector informa-
tion into the IC tester's ROM for operation in the terminal and
stand-alone LCD modes.

Table 3: The six device types supporied by the tester,

Devicetype Number of pins Gndpin +5-Vpin
1 14 7 14
2 14 1 4
3 16 8 16
4 16 12 5
5 20 10 20
6 24 12 24

Table 4: Definition module for the 7437, a “clone " of
the 7400.

#7437 * Quad two-mput MAND buffers
C 7400 * Clone of 7400 (Dev. type=1)
E * End of 7437 definition

107

Explaining all the software for the IC tester would involve
considerably more space than I have available here (see the Cir-
cuit Cellar Ink applications publication for additional support
materials). While my description here is tailored to the applica-
tion and use of the IC tester, the user's manual and distribution
software contain much source code and go into significant detail
describing the process for creating a new device library and test-
ing custom devices.

PC-Host Mode

The PC-host mode of operation is the most powerful of the three
modes. I'll start with its description, because the basic testing
technigue is the same for all three modes.

The PC-host mode provides flexibility in letting you down-
load and use different device libraries and offers test-vector de-
bugging features not available in the other two modes. Functions
like Identify and Test Specified Devlice differ only in the

information displayed and are the same in all modes.

Once you give the PC-host mode operating program the name
of the compacted test-vector file and the serial-port number (1
or 2), the software attempts to establish a communication link
with the IC tester. If the tester does not respond, the PC will
perform two retries (three tries total) before printing an error
message and sounding a beep.

Once communication is established, the PC reads the speci-
fied compacted test-vector file, downloads it to the IC tester,
and displays the version number and a formatted operation
menu on the screen. The typical menu offers four device-testing
options and two mode-selection options.

The display also shows three status/information lines. The
first line, Device:, indicates the name of the current or most
recent device being tested, or the name of an identified device.
The second line, Message:, displays messages like Device
Passed and Device Not Found. The third line, Pin Fallures:,

Name
size
Pointer
ASCII characters Nama Fiald (9 bytes) field VectorTable array
- AL (2 bytes) array index
Record 1
Record 1 [7'| 4’| 0’| 0’ 4| o001 »| 2c | 0001 }:fﬂﬂﬂ“‘
Record 2 s ke iy o g
i = 60
= et o Pin 11O
o definition
Record n 03
DeviceType 1 armay 1E B S
= 08 Pin tri-state
- definition
: FC
Record 1 |'7'|'4"|"1'| 6"}V’ 5| 043C 00 sl
Test-vector
- :f - - T wmm)
- - - F = ¥
Record n Record 2 xx | 002D
A * A
DeviceType 3 array Y i T
- Recordm
e = AA | 0112
. 00
Record 1 |'7']'a'| 1’| 5] 4 51 one 00
Record 2 00
- ; - 17
Racondn Racurdmnh I.x 01BC
DeviceType 6 amay Record n 1 ﬂF
BB | 043C
00
FO
ar

Figure 2: lllustration of the information storage in VECCPT. PAS's primary arrays.

108

displays pin numbers that failed vector tests when testing a spec-
ified device or an EPROM,

The first menu item, Identify Device, tells the tester to at-
tempt to identify the device in the ZIF socket (the device-identi-
fication algorithm supports only devices having the corner
power and ground pins). To identify a device, the system powers
the ZIF socket for a 24-pin device and then applies the first 24-
pin device test vector (if any) in the device library to the DUT.

If the read-back vector compares favorably to the expected
read-back vector (along with the “don't care” mask), the next
vector for the same device is applied, and so on. This continues
until the DUT passes all the test vectors—indicating proper de-
vice identity—or until a vector failure occurs, If a vector failure
occurs, a check is made to see which bits in the read-back vec-
tor, if any, are different from those sent out in the output vector,
These bits represent pins that must be either output or tri-state
pins, and the pin values are noted in an accuracy array.

If the DUT passes all the test vectors, the tester has identified
the device; its name is displayed, and control returns to the
menu. If the DUT fails a vector, the next device in the 24-pin
library is checked.

Testing continues until the DUT is identified or no more 24-
pin devices are left to test. [f the program runs out of 24-pin
devices, it clears the accuracy test array and repeats the same
procedure with the 20-pin, then 16-pin, and finally 14-pin de-
vices. Inability to finally identify the part is only the result of
the device not being in the library, or because it is defective.

The second menu item, Test Specified Device, moves the
cursor to the Device line. If any devices have already been
tested or identified, the name of the last device tested is automat-
ically displayed on the line. If you desire to retest the same part
type, press Return (or Enter). If you wish to choose a different
dcéicc. enter the new device name and press Return to test the
DUT.

By telling the IC tester what type of chip is in the ZIF socket,
all the test vectors for that device will be applied o the device
and checked, regardless of whether they pass or fail. If vector
failures do occur, you'll see the pin numbers on the Fin Fall-
ures: line,

The first two menu items represent the operations you will
probably want to do 99 percent of the time and can be done in all
three operating modes. Sometimes, however, you may have
2716 or 2732 EPROMS that you would like to verify are blank.
Menu items 3 and 4 provide this capability.

In addition to performing a blank check on the EPROM, the
EPROM tests also check for shorts on the EPROM input pins. If
shorted pins are defected, an error message is displayed and the
failed pins are displayed on the Pin Fallures: line. Since the
ZIF socket is only 24 pins, the tester cannol accommodate
larger EPROMS.

The third menu selection deals with CMOS logic devices only.
As [discussed in part 1 of this chapter, all the standard 74xx00-
series logic families except the 74C00 series (and some specific

devices within other families) are capable of sourcing and sinking
enough current on their outputs for proper operation of the tester.

The 74C00-series devices (and the similar 4000-series
CMOS devices) have a problem sinking cnough current to
switch logic states when an output is pulled up to +5 volts. Most
of the tests for the 74xx00-series families attempt to load the
device outputs in the direction opposite the expected state (if an
output is expected 10 go low, it is loaded with a pull-up resistor),
causing particular problems when testing the 74C00-series fam-
ily devices when reading outputs that are expected low, but are
being pulled up.

The remedy for the 4000-series devices is simple: Write all
test vectors for these devices always using a pull-down load on
all outputs. In order to keep the 74xx00-series tests the same for

all families, however, I had 1o use a different approach. Menu
item 5 lets you Set 74Cx Mode,

In this mode, regardless of the original output vector-bit
levels, all output vector bits that correspond to device output
(non-tri-state) pins are changed to low (pull-down). This allows
the 74C00-series devices to the generic 74xx00-serics
tests. You can also select this mode for identifying 74C00-series
devices.

The final menu option is Set Diagnostic Mode. This option
is available only when operating the tester in PC-host mode. It
adds an extra line 1o the bottom of the display, Vector Fail-
ures:, to indicate which test vectors failed when testing a
device.

When testing a specified device (not when identifying a device)
in diagnostic mode, the Device: line indicates the number of pins
the device has, as well as the ground pin number and the power pin
number. If the device is a clone of another device, this is also indi-
cated, along with the device name of the original device.

If the device being tested fails, the Message: line indicales
how many vectors failed (along with the normal failure mes-
sage), and the Vector Failures: line indicates the vector num-
bers of the first 10 failed vectors {or all failed vector numbers, if
fewer than 10 failed), The extra information can prove helpful
when debugging new test vectors.

ROM-Resident Control Program

The IC tester’s 8031 assembly language control program pro-
vides local support for all three modes. A software-readable,
four-position DIP switch selects mode and data transfer rate,
while a status LED indicates the tester’s current operating dis-
position (a second LED acts as a power-on indicator).

Number of bytes
used in VectorTable

array (2 bytes)
} Number of DeviceType 1

Start of file —

array records (2 bytes)

Number of DeviceType 2
array records (2 bytes)

Number of DeviceType 6
array records (2 bytes)

DeviceType 1 array information

DeviceType 6 array information

VectorTable array information

Endoffile —] T

Figure 3: Format of the vector-compaction file outpur by
VECCPT. PAS.

109

Upon power-up or reset (using the on-board reset button), the
program initializes the 8031's on-chip ports to turn off all power
and ground transistors to the ZIF socket and to place the LCD
interface lines in their appropriate default states.

It then generates a brief delay (nominally, | second) to pro-
vide time for power to stabilize for all devices on the board.
Software then checks two of the DIP switches to determine the
desired data transfer rate and configures the 8031°s on-chip
UART to handle serial communications at the specified data
transfer rate.

Once initialization is completed, the program checks another
DIP switch to see if the user has selected PC-host mode or ter-
minal mode. For terminal mode, the system turns on the status
LED (to indicate that a serial operating mode, as opposed to
stand-alone mode, is currently e¢nabled) and sends a sign-on
message and menu out the serial port to the attached terminal.
For PC-host mode, no sign-on message is sent.

In either case, the tester also displays a sign-on message on
the optional LCD, if present. In order to select the stand-alone
mode, you merely press the “Identify” push button—which is
constantly polled during both serial operating modes—and the
system will turn off the status LED to indicate stand-alone mode
operation. The only way to return to serial mode operation is by
pressing Reset.

When operating in PC-host mode, the IC tester’s ROM pro-
gram merely responds to commands from the host. Various
commands allow “reset” (power and ground transistors turned
off), software version request, power and ground switch setup,
and DUT output vector application and read-back vector read-
ing. Terminal mode operation is similar to PC-host mode opera-
tion, with the exception that you are restricted to the device
library stored in ROM, and the diagnostic mode described
earlier is unavailable.

Stand-alone operation requires no connection to the serial
port, but it does require that you have the LCD installed (see
photo 2). All interaction is via the on-board “Identify” and

Photo 2: You can use the IC tester in stand-alone mode,
provided you have artached the tester's optional LCD, The
push-button switches in the upper right, lower left, and lower
right control the tester 's operation.

110

“Retest™ push-button switches and the LCD. A DIP switch en-
ables or disables " 74Cx" mode.

Pressing the *Identify™ push button causes the tester to al-
tempt to identify the device in the ZIF socket. If the identifica-
tion is successful, the device name is displayed on the LCD;
otherwise, an identification failure message is displayed.

Once a device has been identified, you can test other devices
of the same type using the “Retest™ push button. The test vec-
tors for the identified device are then applied to the DUT, and
detected pin failures, if any, are displayed on the LCD.

Flexibility

While the Circuit Cellar IC tester represents hundreds of hours
of hardware and software development, the end result is some-
thing that was designed to be simple to operate. It clearly offers
a great deal of flexibility for testing common devices, but it is
also useful for developing tests for custom or proprietary de-
vices like programmable array logic.

In order to test a PAL, you must develop a series of test vec-
tors that apply bit patterns to the device inputs and watch for
expected output values just like those from any standard 74xx
logic device. The PAL test vectors are based on the logic-trans-
fer functions (the logic equations) of the device.

You compile and name the test vectors and then add them to
the device library. To test PALs, you run the IC tester in the
normal way: Just insert the PAL to be tested in the ZIF socket
(bottom-justified) and specify cither the Identify Device op-
tion (the easier choice) or the Test Specifled Device option,
giving the device's name, “PAL1," for example.

In Conclusion

The powerful, yet easy-to-use, Circuit Cellar IC tester can pro-
vide testing and identification for innumerable standard and
custom IC devices, in packages ranging from 14 to 24 pins. It's
a tool that can save you time and money by catching potential
problems during production, helping debug problem boards,
and by identifying and/or verifying unknown devices or devices
with uncertain operation. The flexibility and capability offered
by this tester were previously available only to those willing to
spend thousands of dollars.

In all honesty, | have to admit that the hardware for this proj-
ect was trivial compared to the enormous software task involved
in creating the operating system and device library. The initial
Revision 1.0 ROM-resident library contains more than 200 ge-
neric entries. Considering that a generic entry of *7400" can
cover 10 clone entries, the library physically covers about 800
chips. I owe a special debt of gratitude to those who helped put
this project together and saved me from having to deal with all
this software.

Experimenters
While you can order printed circuit boards and kits for the Cir-
cuit Cellar IC tester, I encourage you to build your own. If you
don’t mind doing a little work, [will again support your efforts,
A hexadecimal file of the executable code for the IC tester's
8031 EPROM (a 27256) is available free for downloading from
my bulletin board at (203) 871-1988. It contains the complete
Revision 1.0 ROM-resident device library and software for
complete stand-alone and terminal mode operation.
Alternatively, you can send me a preformatted IBM PC 5%-
inch disk (2.0 or higher) with return postage, and I'll put the file
on it for you. Please add $5 for a printed copy of the user's man-
ual. Of course, as always, this free software is limited to non-
commercial personal use.

I would like to personally thank Roger Alford and Bill Potter for
their collaborative efforts on this project. Bill Polter’s lireless
dedication creating the test-vector library and Roger Alford’s
clever programming expertise served to make the Circuit Cellar IC

lester a true performer.

Editor's Note: Steve often refers to previous Circuit Cellar articles,
Most of these past articles are available in book form from BYTE
Books, McGraw-Hill Publishing Company, P.O. Box 400, Hightstown,
INJ 08250, (1-800-2-MCGRAW).

Ciarcia’s Circuit Cellar, Volume I covers articles in BYTE from Sep-
tember 1977 throughNovember 1978. Volume I covers December 1978
through June 1980. Volume 111 covers July 1980 through
December 1981. Volume IV covers January 1982 through June 1983.
Volume V covers July 1983 through December 1894,

It's virtually impossible to provide all the pertinent details of a project
orcoverall thedesigns1'd liketoin the pages of BYTE. For that reason,
Ihavestarted a 24-page bimonthly supplemental publication (with no
advertising) called Gircuit Cellar Ink, which presentsadditional infor-
mation on projects published in BYTE, new projects, and supplemen-
tal applications-oriented materials. For a one-year subscription, send
$14.95 to Circuit Cellar Ink, or call(208) 875-2199.

The following items are available from

Circult Cellar, Inc.
4 Park St., Suite 12
Vermnon, CT 060656
(203) 875-2751

1. Gircuit Cellar IC tester experimenter’s kit for stand-alone or terminal
operation. Contains IC tester printed circuit board, 11.0592-megahertz
crystal, programmed 27256 EPROM with Revision 1.0 device library,
MAX232 level shifter, Aries 24-pin narrow-format ZIF socket, and
manual with complete parts list. ICTO1-EXP.. 599
2. Circuit Cellar IC tester full printed circuit board kit for stand-alone,
terminal, or PC-host operation. Contains IC tester printed circuit
board, 8031 processor and crystal, programmed 27256 EPROM with
revision 1.0 device library, Aries 24-pin narrow-format ZIF socket, IC
sockets, all board-mounted components and IC’s, PC-host software
on PC format disk, power supply, and manual, ICT0I-FULL.....$179

3. Complete Circuit Cellar [C tester kit with stylish enclosure. Full

printed circuit board kit with all components, right-angle-mounted
evclosure adapter board with ZIF socket and LCD, software on PC
format disk, power supply, and manual. ICT02.... SR ..
4. Two-line by 20-character LCDand 14-pm Bng connector for either
item 1or2. 2220 LCD.... i RSN ~]

All payments should be made in U.S. dollars by check, money order,
MasterCard, Visa, or American Express. Surface delivery (US. and
Canada only): add $5 for U.S, $8 for Canada. For delivery to Europe
via U.S. airmail, add $14. Three-day air freight delivery: add S10 for
U.S. (UPS Blue), 825 for Canada (Purolator overnight), $45 for Europe
(Federal Express), or $60 for Asia and elsewhere in the world (Federal
Express). Shipping costs are the same for one or two units.

There is an on-line Circuit Cellar bulletin board system that supports
past and present projects. You are invited to call and exchange ideas
and comments with other Circuit Cellar The 300/1200/2400-
bps BES is on-line 24 hours a day at (203) B71-1988.

111

